Sınıflandırma
Normal Dağılım kavramını açıklayınız.
Normal dağılım, ortalama (konum) ve standart sapma (ölçek) parametreleriyle
belirli olup olasılık yoğunluk fonksiyonu grafiği çan eğrisi şeklinde simetrik bir eğridir. Normal dağılım tanım aralığı negatif sonsuzdan pozitif sonsuza kadar bütün değerleri kapsar.
Sınıflandırma kavramını açıklayınız.
Örüntü tanıma olarakta adlandırılan sınıflandırma işlemi medikal görüntüleme, optik karakter tanıma, video izleme, vb. birçok bilgisayarlı görme tabanlı uygulamaların yanı sıra otomatik öğrenme ve uzaktan algılama uygulamalarında da yaygın bir şekilde kullanılmaktadır. Uzaktan algılamada sınıflandırma, tematik bilgiyi oluşturan görüntüdeki anlamlı örüntü gruplarının belirlenmesi işlemidir. Bir başka deyişle farklı mekânsal, spektral, radyometrik ve zamansal bileşenleri olan görüntü verisinin, farklı yüzey materyallerini ve durumlarını kategorize eden açıklayıcı etiketlere veya tematik bilgiye dönüştürülmesidir. Ne ve nerede olduğu tanımlanan tematik bilgi, yeryüzündeki bitki örtüsü, toprak, su gibi genel kategorilerden farklı toprak ve bitki örtüsü türleri, su derinliği ve kirliliği, vb. daha detaylı alt kategorilere bağlı olarak değişkenlik gösterir.
Özellik ve Özellik Uzayı kavramlarını açıklayınız.
Sınıflandırma işlemi ile görüntüdeki farklı özelliklerin veya objelerin belirlenmesi
ve tanımlanmasını sağlayacak kantitatif karar fonksiyonları oluşturulur. Kantitatif karar fonksiyonlarının oluşturulmasında görüntüye ait spektral ve mekânsal bilgilerle bölgeye ait diğer yardımcı veriler kullanılır. Sınıflandırmaya girdi olacak bu bilgilere özellik ve özelliklerin oluşturduğu uzaya özellik uzayı denir.
Örüntü kavramını açıklayınız.
Temel problem, bir kategoriyi diğerinden ayıran fiziksel sınıf karakteristiklerine karşılık gelen sınıf veri özelliklerinin nasıl belirleneceğidir. Özellik uzayındaki her bir nokta bir örüntüdür. Diğer bir deyişle, örüntü, sınıflandırma işleminin temel girdisi olan görüntü özelliklerine ait ölçüm vektörüdür. Spektral tabanlı sınıflandırma problemlerinde örüntüler, görüntü verisinin her bir spektral banttaki ışınırlığın ölçüm değerleridir. Mekânsal tabanlı sınıflandırma problemlerinde ise örüntü, görüntüdeki elemanların (piksel) komşuluk, geometrik yakınlık, doku, vb. mekânsal ölçütleridir.
Genel olarak sınıflandırmada, kategorilere ait özellikler arasındaki karışım nedeniyle birbirlerinden ayırt edilebilirliği etkileyen başlıca dört faktör vardır, bunlar nelerdir?
1. Topoğrafya ve topoğrafik aydınlanma koşulları,
2. Atmosferik değişkenlik,
3. Algılayıcı kalibrasyon değişimleri,
4. Bir pikselin yeryüzünde karşılık geldiği alan içindeki sıı›f karışımları.
Bu faktörlere bağlı olarak sınıfları temsil eden veri özellikleri değişkenlik gösterir
ve bu nedenle tek bir vektör yerine bir dağılım ile gösterilirler. Çok spektrumlu
bir görüntünün yüksek doğrulukla sınıflandırılması, sınıfların ayırt edici özellikleri
arasındaki karışım oranına bağlıdır. Bu oranın dikkate alınmasına bağlı olarak
uygun yöntemler geliştirilebilir. En yaygın kullanılan piksel tabanlı sınıflandırma
yöntemlerinin yanı sıra görüntü verisine, uygulama türüne ve yardımcı verilere
bağlı olarak alt piksel sınıflandırması ve alan tabanlı sınıflandırma teknikleri de geliştirilmiştir. Günümüzde yüksek mekânsal çözünürlüklü uydu verilerinin kullanımının hızla artmasıyla piksel tabanlı sınıflandırma yöntemlerine alternatif olarak nesne tabanlı sınıflandırma yöntemleri de kullanılmaya başlanmıştır.
Piksel Tabanlı Sınıflandırma terimini açıklayınız.
Piksel Tabanl› Sınıflandırma:
Genel olarak tematik haritalar, görüntü piksellerinin karşılık geldiği yeryüzü alanı sadece tek bir kategoriye ait olacak şekilde üretilir. Sınıflandırma algoritmaları herhangi bir kategori değerinin bir piksele atanması için belirli bir benzerlik fonksiyonu üretir. Piksel tabanlı sınıflandırmada, bilinmeyen piksele bu pikselin en büyük benzerlik değerine sahip olduğu sınıf etiketi atanır. Özellikle yapay zeka çevrelerinde bu strateji “Kazanan Hepsini Alır” olarak bilinmektedir. Böyle bir sınıflandırma için özellik uzay› karar sınırları rijit ve tek anlamlıdır.
Mekânsal çözünürlüğe bağlı olarak piksel alanı içerisinde sıklıkla farklı yüzey örtü tipleri bulunduğundan bu yaklaşım, kolay uygulanabilir olmasına rağmen, gerçek çevre şartlarına ve uzaktan algılama verisinin dijital karakterine uygun değildir. Diğer bir ifade ile yeryüzünde bir alana karşılık gelen pikselin homojen olmadığı durumda o piksele atanan parlaklık değeri de gerçekte bir karışımı temsil edecektir.
Alt Piksel Sınıflandırması kavramını açıklayınız.
Alt Piksel Sınıflandırması:
Pikseller, araziye izdüşürülmüş yayılım fonksiyonu üzerinde mekânsal bir ortalamaya sahip olduğu için piksellerin içinde birden çok spektral kategorinin olması kaçınılmazdır. Bu gerçek Landsat MSS görüntü verilerinin analizinde ortaya çıkmıştır. Sınıf karışım oranları, pikselden piksele değişir. Karışım bileşenlerinin belirlenmesi için hiperspektral algılayıcılar ile yeni teknikler
önerilmiştir. Bütün doğal ve bazı suni yüzeyler değişik mekânsal çözünürlük seviyelerinde düzenli olmadığından, uydu görüntüsünün mekânsal çözünürlüğü artsa bile sınıf karışımı hâlâ mevcut olmaktadır. Bununla beraber, çoğu yüzey materyalinin doğal bir ölçeği olduğundan mekânsal çözünürlüğün artması belirli sınıflar için karışık piksellerin yüzdesini azaltabilmektedir. Fakat cisimlerin büyüklüğü ve algılayıcı sistemlerin mekânsal çözünürlüğü göz önüne alınmaksızın cisimler arasındaki sınırlarda karışık pikseller hâlâ mevcut olmaktadır. Bunun nedeni ise, bütün gerçek yeryüzü cisimlerinin pikselin yeryüzünde karşılık geldiği alan değerinden daha küçük boyutlu mekânsal detaya sahip olmasıdır. Alt piksel sınıflandırmasında her bir pikselin birden fazla sınıfa olan benzerlik değerleri elde edilebilir. Pikseller bu benzerlik değerlerine göre belirli üyelik oranlarıyla birden fazla sınıfa atanır. Böyle bir sınıflandırma için özellik uzayı karar sınırları bulanık yapıdadır. Benzerlik değerleri, örüntülere (piksel özellik vektörü) atanan her bir kategorinin ilgili örüntü içindeki rölatif bulunma oranlarını gösterir. Eğer ayrım derecesi yüksekse hatasız sınıflandırma işlemini yapabilecek birçok potansiyel karar sınırı kuralı vardır. Eğer sınıflar arası bindirme varsa hatasız kolay bir karar sınırı oluşturmak imkânsızdır.
Alan Tabanlı Sınıflandırma kavramını açıklayınız.
Alan Tabanlı Sınıflandırma:
Piksel tabanlı sınıflandırmaya diğer bir alternatif de alan tabanlı sınıflandırmadır. Bu yöntemde pikseller yerine alanlar sınıflandırılır. Bu yöntem görüntüdeki alansal objelerin biçimsel sınırları hakkında öncül bilgiler gerektirir (örneğin tarım alanları gibi). Eğer bu objelerin sınırları sayısallaştırılır ve görüntüye kayıt edilirse veya segmentasyon algoritmalarıyla çıkartılırsa veya kenar çıkartım algoritmaları kullanılarak elde edilirse, bu sınırlar içinde kalan piksellerin özellikleri kullanılarak bu alanlar karakterize edilebilir. Örneğin bir alandaki spektral özellikleri temsil etmek için bantların ortalama ve standart sapma değerleri kullanılabilir. Alan tabanlı sınıflandırma yöntemi, daha çok SAR görüntü verileri için kullanılmaktadır. Bunun nedeni, bu görüntülerin bireysel piksellerin sınıflandırma performansını olumsuz etkileyen benek gürültüsüne sahip olmasıdır.
Nesne tabanlı sınıflandırma terimini açıklayınız.
Nesne tabanlı sınıflandırma, sadece görüntüdeki spektral bilgiyi (bant yansıtım değerleri) değil piksellerin komşuluk özelliklerini yansıtan doku ve bağlam bilgilerini de kullanan bir yöntemdir. Sınıflandırılan temel eleman piksel değil, komşuluk ilişkisine sahip piksel gruplarından oluşan objeler (nesneler)dir. Bireysel piksellerde görülemeyen semantik (anlamsal) bilgiler nesnelerde ve nesnelerin karşılıklı ilişkilerinde tespit edilebilir. Özellikle çok yüksek mekânsal çözünürlüklü uydu görüntülerinde yollar, binalar, park alanları veya piknik alanları, otlaklar, vb. birçok cisim benzer spektral özellikler gösterirler.
Buna bağlı olarak piksel tabanlı yaklaşım hem düşük doğruluklu hem de sınıf
dağılımı düzensiz ve anlamlı olmayan sonuçlar üretebilir. Nesneler genellikle otomatik segmantasyon algoritmalarıyla oluşturulur. Segmantasyon, ölçek, renk ve şekil gibi belirli homojenlik ölçütlerine göre piksellerin gruplanmasıdır . Nesneler oluşturulduktan sonra, bu nesnelere ait istenen spektral (renk tonu), mekânsal (alan, çevre), doku (entropi, varyans) ve bağlamsal özellikler (komşuluk) çıkartılır. Nesne tabanlı sınıflandırmanın piksel tabanlı sınıflandırmadan olan diğer bir önemli farkı, çoğunlukla bulanık (fuzzy) mantığa dayalı alt piksel sınıflandırma yaklaşımının kullanılmasıdır. Bulanık mantık yöntemi belirsiz olan birçok özelliğin sınıflandırma işlemine etkin olarak dahil edilmesini sağlar.
Kontrollü yaklaşımı tanımlayınız.
Sınıflandırma işlemi için hangi algoritma kullanılırsa kullanılsın kontrollü ve
kontrolsüz olmak üzere iki temel yaklaşım vardır. Kontrollü sınıflandırma yaklaş-
mında istenen sınıfları temsil eden öncül tematik bilgi vardır ve bunlara eğitim verisi denir. Diğer bir ifade ile her bir örüntü için karar fonksiyonlarına göre atanacağı olası sınıflar önceden belirlidir. Buna göre e¤ğtim verileriyle belirlenen karar fonksiyonlarıyla özellik uzayını oluşturan her bir örüntü bilinen bir sınıfa atanır (etiketlenir).
Kontrolsüz sınıflandırma yaklaşımını açıklayınız.
Kontrolsüz sınıflandırma yaklaşımında ise öncül herhangi bir tematik bilgi
yoktur. Diğer bir ifade ile sınıfların ne olduğu ve örüntülerin hangi sınıfa atanacağı bilgisi bulunmamaktadır. Örüntüler belirli bir metriğe göre doğal olarak kümelenirler. Doğal spektral grupların oluşturduğu bu kümeler, daha sonra arazi
incelemeleriyle veya topoğrafik haritalar ve hava fotoğrafları kullanılarak etiketlenir. Her iki yaklaşımda da sonuç ürün, her bir piksel için tek bir kategori içermektedir. Bunun tersine, karışık piksel sınıflandırma yönteminde, sınıfların ayırt edici özelliklerinin birbiriyle karışmış oldukları kabul edilerek her bir pikselin ilgili sınıflara olan üyelik dereceleri belirlenir. Bu yöntem bulanık (fuzzy) sınıflandırma olarak adlandırılmaktadır.
Bulanık (fuzzy) mantık terimini açıklayınız.
Bulanık (fuzzy) mantık,
Çok önemli bir mantık uygulamasıdır. Klasik mantıkta aşırı uçlar kullanılırken, bulanık mantıkta aşırı uçların yanı sıra yaklaşık ara değerlerde kullanılır. 1960’larda Loutfi Zadeh’in teorisini oluflturduğu bulanık mantığın en önemli avantajı problemleri gerçek hayattaki yaklaşık ifadelerle modelleyebilmesidir. Bir aracın hız olgusu, “çok yavaş”, “yavaş”, “hızlı”, “çok hızlı” gibi dilsel kavramlarla ifade edilebilir. Buradaki her bir kavram bir bulanık kümeye karşılık
gelir. Buna göre herhangi bir hız değeri bütün kümelere belirli bir üyelik derecesiyle ait olabilir. Klasik mantıkta bu hız değeri bu kümelerden sadece birine ait olabilir. Bulanık mantık, özellikle karmaşık sistemlerin otomatik kontrolünde, robotikte, bilgisayarlı görmede ve daha birçok farklı alanda kullanılmaktadır.
Yapay Sinir Ağları kavramını açıklayınız.
Yapay Sinir Ağları (YSA), biyolojik beynin çalışma prensibini matematiksel
olarak taklit eden lineer olmayan hesaplamalı modellerdir. Beyin dokusunun temel elemanı olan biyolojik nöronlar, birbirleriyle kurdukları binlerce bağlantıyla aynı anda paralel çalışan büyük bir ağ meydana getirirler. Beynin bu paralel çalışabilme özelliği, merkezi ve çevresel sinir sisteminin hiçbir aksama olmadan gerektiği gibi hızlı çalışmasını sağlar.
YSA’nın diğer sınıflandırma algoritmalarından farkı nedir, açıklayınız.
1. Kantitatif karar sınırlarının deterministik ve sabit olmaması,
2. Farklı kaynaklardan elde edilen değişik verilerin birlikte kolaylıkla kullanılabilmesi,
3. Herhangi bir istatistiksel dağılım kabulü gerektirmemesidir. İstatistiksel sınıflandırma algoritmalarında karar fonksiyonlarının temelini oluşturan istatistiksel varsayımlara ait parametreler eğitim veri kümesi kullanılarak
belirlenir. Belirtilen bu avantajlarına karşın, uygun ağ yapısının seçimi, ağ
parametrelerinin başlangıç değerlerinin belirlenmesi, iterasyon sayısı, aktivasyon fonksiyon tipi ve diğer öğrenme parametrelerinin belirlenmesindeki zorluklar YSA’nın dezavantajlarıdır.
Dönüştürülmüş Diverjans Uzaklığı kavramını açıklayınız.
Diverjans ölçütünün yanı sıra normalize edilmiş hali olan “Dönüştürülmüş
Diverjans” uzaklığı, Bhattacharyya ve JeffriesMatusita olasılıksal uzaklıkları gibi diğer istatistiksel ayırt edilebilirlik ölçütleri de özellik seçiminde kullanılmaktadır.
Normal Dağılım kavramını açıklayınız.
Alman matematikçi Gauss’un ölçme hataları üzerine yaptığı çalışmalar sonucunda tanınan Normal (Gauss) dağılım, sürekli bir olasılık dağılımı olup bilimin her alanında, rastlantısal etkiler içeren fiziksel ölçmeler için temel bir
modeldir. Bundan dolayı,istatistiksel karar alma (sonuç çıkarma) ve regresyon analizlerinin temel istatistik modelidir.
Normal Dağılım kavramını açıklayınız.
Normal dağılım, ortalama (konum) ve standart sapma (ölçek) parametreleriyle
belirli olup olasılık yoğunluk fonksiyonu grafiği çan eğrisi şeklinde simetrik bir eğridir. Normal dağılım tanım aralığı negatif sonsuzdan pozitif sonsuza kadar bütün değerleri kapsar.
Melez (Hibrit) sınıflandırma kavramını açıklayınız.
Melez (Hibrit) sınıflandırma, kontrollü ve kontrolsüz sınıflandırma yöntemlerinin bir arada kullanıldığı bir yöntemdir. Bu tip bir yaklaşımda kontrolsüz sınıflandırma sonrasında elde edilen kümeler (benzer arazi örtüsü/kullanımı sınıflarını gösteren) birleştirilerek, kontrollü sınıflandırma için gerekli eğitim alanlarının oluşturulmasında etkin öncül bir araç olarak kullanılırlar. Daha sonra elde edilen bu eğitim alanları ile tüm görüntü En Kısa Uzaklık, Maksimum Olabilirlik, vb. sınıflandırma yöntemleri ile sınıflandırılarak tematik haritalama yapılabilir.
K-ortalamalar algoritmasını açıklayınız.
En temel kontrolsüz sınıflandırma yöntemi K-ortalamalar algoritmasıdır. Bu
yöntemde örüntüler, seçilen küme merkezlerine olan uzaklıkları dikkate alınarak
en yakın oldukları kümeye atanırlar. Öncül tematik bilgi olmadığı için küme merkezleri başlangıçta ya rastlantısal ya da sistematik olarak belirlenir. Daha sonra her bir kümeleme işleminden sonra küme merkezleri güncellenir. Böylece algoritma en uygun merkez de¤erlerini, diğer bir ifade ile örüntüler için en uygun küme etiketlerini adım adım (iteratif) güncelleyerek elde eder. En yaygın kullanılan uzaklık ölçütü Öklit normudur.
Hata Matrisi terimini açıklayınız.
Sınıflandırma doğruluklarının belirlenmesinde en yaygın yaklaşım hata matrisi
kullanımıdır. Hata matrisinin oluşturulmasında bütünüyle ilgili kategorilere ait olduğu kabul edilen referans verileri (test verileri) kullanılır. İlk olarak görüntüdeki bütün pikseller, eğitim verisiyle tanımlanan sınıflandırma yöntemine göre sınıflandırılır. Daha sonra referans verilerine karşılık gelen piksellerin kaç tanesinin hangi sınıfa atandığı belirlenir. Son adım olarak referans verilerine ait bu sayılar sütunlar halinde yan yana yerleştirilerek bir matris oluşturulur. Hata matrisi olarak adlandırılan bu matrisin her bir sütunu ayrı bir kategoriye karşılık gelirken satırlar referans verilerin atandıkları sınıfları temsil etmektedir. Buna göre toplam k tane sınıf için hata matrisi k satır ve k sütundan oluşur.
Monotonik fonksiyon terimini açıklayınız.
Monotonik fonksiyon, verideki sırayı koruyan reel değerli bir fonksiyondur.
Bütün x ve y’ler için x ≤ y ise f(x) ≤ f(y) olur. Örneğin, doğal logaritma fonksiyonu (ln) monotonik bir fonksiyon olduğundan, 1< 2 s›ralaması için ln(1) < ln(2) sıralaması her zaman sağlanır. Monotonik bir fonksiyonun terside aynı
şekilde verilen sıralamayı korur.