aofsorular.com
İST203U

Olasılık Kuramı

5. Ünite 20 Soru
S

Olasılık nedir? tanımlayınız.

Olasılık, bir olayın ortaya çıkma şansını ifade eden, sıfır ile bir kapalı aralığında (0 ve 1 dahil) bir değerdir.

S

olasılık kavramlarından deneme kavramını açıklayınız.

Çeşitli olası gözlemlerden yalnızca birinin gerçekleşmesi ile sonuçlanan sürece deneme adı verilir. Bir denemenin iki ya da daha fazla olası sonucu bulunur ve bu sonuçlardan hangisinin gerçeklefleceği belirsizdir.

S

olasılık kavramlarından sonuç kavramını açıklayınız.

Bir denemenin sona erme biçimine sonuç adı verilir. Örneğin, tek bir bozuk paranın atılması bir denemedir. Paranın havaya atılışı gözlemlenebilir ancak “yazı” ya da “tura”dan hangisinin geleceği önceden bilinemez. Bu denemedeki olası sonuçlardan biri paranın yazı gelmesi, diğeri ise paranın tura gelmesidir. Dolayısıyla bu deneme için olası sonuç sayısı ikidir. Benzer olarak, bir zar atma denemesinde 1, 2, 3, 4, 5 ve 6 olmak üzere altı olası sonuç bulunur.

S

olasılık kavramlarından örneklem uzayı kavramını açıklayınız.

Bir denemenin tüm olası sonuçlarından oluşan kümeye örneklem uzayı adı verilir ve bu küme S harfi ile ifade edilir. Denemenin olası tüm sonuçlarına örneklem uzayının bir elemanı karşılık gelir. Bu elemana da örneklem uzayı noktası adı verilir.

S

Olasılık kavramlarından olay kavramını açıklayınız.

Bir denemenin bir ya da daha fazla sonucundan oluşan kümeye ise bir olay adı verilir. Dolayısıyla, örneklem uzayının herhangi bir alt kümesi, bir olay olacaktır.

S

Klasik Olasılık nedir? Açıklayınız.

Klasik olasılık tanımı, bir denemenin sonuçlarının eşit olasılıklı olduğu varsayımına dayanır. Klasik bakış açısıyla, bir olayın gerçekleşme olasılığı ilgilenilen sonuçların sayısının, olası tüm sonuçların sayısına bölünmesi yoluyla hesaplanır.

S

Deneysel Olasılık nedir? Açıklayınız.

Olasılık tanımlarından bir diğeri, göreli frekanslara dayalı olarak yapılır. Bu yaklaşımda bir olayın gerçekleşme olasılığını hesaplamak için, geçmişte benzer olayların gerçekleşme sayısının oranına bakılır.

S

Öznel (Subjektif) Olasılık nedir? Açıklayınız.

Öznel olasılık, olasılığın belirlenmesi için herhangi bir geçmiş deneyim ya da bilginin bulunmadığı durumlarda başvurulan yaklaşımdır. Bu yaklaşımda, mevcut görüşler ve eldeki diğer bilgiler değerlendirilerek olaya ilişkin olasılık tahmin edilir ya da belirlenir. Belirlenen bu olasılığa, öznel olasılık adı verilir. Öznel olasılık için, istatistik dersini alan bir öğrencinin final sınavından 80’in üzerinde puan alma olasılığının tahmin edilmesi, 2011 yılı gelirleri için Türkiye’de en fazla kurumlar vergisi ödeyecek kuruluşun tahmin edilmesi vb. gibi örnekler verilebilir.

S

Özel Toplama Kuralı nedir?

Özel toplama kuralı, yalnızca karşılıklı ayrık olaylar için uygulanabilir. Eğer A ve B olayları karşılıklı ayrık olaylar ise özel toplama kuralına göre bu olaylardan birinin veya diğerinin gerçekleşme olasılığı, bu olayların ayrı ayrı gerçekleşme olasılıklarının toplamına eşittir.

S

Tümleyen kuralı nedir? Açıklayınız.

Bir olayın gerçekleşme olasılığının, bu olayının gerçekleşmeme olasılığının 1’den çıkarılması yoluyla belirlendiği kuraldır. 

S

Ortak Olasılık nedir?

Ortak Olasılık, iki ya da daha fazla olayın aynı anda gerçekleşme şansını ölçen olasılıktır.

S

Özel Çarpma kuralı nedir? Açıklayınız.

Özel çarpma kuralının uygulanabilmesi için olayların birbirinden bağımsız olması gerekir. Eğer bir olayın gerçekleşmesi, bir diğer olayın gerçekleşme olasılığını değiştirmiyorsa bu iki olay birbirinden bağımsızdır.
A ve B olayları farklı zamanlarda gerçekleştiğinde, söz gelimi A olayının gerçekleşmesinden sonra B olayı gerçekleştiğinde, A olayı B olayının gerçekleşme olasılığını etkilemiyorsa bu A ve B olayları bağımsız olaylardır. Örneğin, bir zarın iki kez atılması denemesinde ikinci zardan elde edilen sonuç, birinci zarın kaç geldiğinden bağımsızdır.
Özel çarpma kuralına göre; A ve B bağımsız olayları için A ve B’nin birlikte gerçekleşme olasılığı, bu iki olayın ayrı ayrı gerçekleşme olasılıklarının çarpımına eşittir.

S

Genel Çarpma Kuralı nedir? Açıklayınız.

Herhangi iki olay bağımsız olmadığında, bu iki olayın ortak olasılığını hesaplamada kullanılan kuraldır. Söz gelimi, A olayı gerçekleştikten sonra B olayı gerçekleşiyorsa ve B olayının gerçekleşmesinde A olayının etkisi varsa A ve B olayları bağımsız değildir. Genel çarpma kuralına göre A ve B gibi iki olay için, bu olayların birlikte gerçekleşme olasılığı, A olayının gerçekleşme olasılığı ile A’nın gerçekleştiği bilindiğine göre B’nin koşullu olasılığının çarpımına eşittir.

S

Permütasyon kuralı nedir? Açıklayınız.

Saymanın temel ilkesi iki ya da daha fazla grup için olası düzen sayısını bulmada kullanılırken permütasyon kuralı, yalnızca bir nesne grubu için olası sıralama sayısını bulmada kullanılır. Örneğin, bir kişi mobilya üretimi yapan bir firmadan dört adet mobilya satın almış olsun. Mobilyaların eve teslimatı sırasında bu mobilyalar kamyondan herhangi bir sırayla indirilebilir. Söz gelimi, ilk olarak yemek masası, ikinci olarak televizyon sehpası, üçüncü olarak komidin ve son olarak gardrop biçiminde indirme işlemi yapılabilir. Burada yapılan bu sıralamaya bir permütasyon adı verilir. Dolayısıyla, n olası nesnenin tek bir grubundan seçilen r adet nesnenin herhangi bir sıralamasına permütasyon adı verilir. Burada dikkat edilmesi gereken nokta, (yemek masası, televizyon sehpası, komidin, gardrop) sıralaması ile (gardrop, yemek masası, komidin, televizyon sehpası) sıralamaları, farklı permütasyonları ifade etmektedir.

S

Kesikli Rassal Değişken nedir? Açıklayınız.

Sonlu ya da sayılabilir sayıda farklı değeri bulunan rassal değişkenlere kesikli rassal değişken adı verilir. Eğer bir şirkette çalışanların sayısı 500 ise belli bir günde mazeretleri nedeniyle işe gelmeyenlerin sayısı yalnızca 0’dan 500’e kadar tamsayılar olabilir. Kesikli rassal değişkenler aldıkları değerleri genellikle incelenen olaya konu olan birimlerin sayılması sonucunda alırlar. Kesikli rassal değişkenlerin, kesirli ya da ondalık değerler aldığı durumlar da bulunabilir. Ancak bu değerler birbirinden ayrılmış olmalı ya da aralarında belli uzaklıklar olmalıdır. Örneğin, 1’den 10’a kadar ondalıklı değerlerle değerlendirilen bir sınav sonucunda öğrenciler, 3,5; 8,9 ya da 6,7 vb. gibi notlar alabilir. 5,5 ve 5.6’da olduğu gibi, alınan notlar arasında 0,1 puanlık uzaklıklar olacağı için öğrencilerin aldığı notlar kesikli rassal değişkendir.

S

Sürekli Rassal Değişkenler nedir? Açıklayınız.

Sayılamayacak ya da sonsuz sayıda olası değeri bulunan ve bir sayı aralığı ya da aralık kümesi üzerinde tanımlanan rassal değişkenlere sürekli rassal değişken adı verilir. Fabrikada üretilen bir vidanın uzunluğu, bir tansiyon hastasının büyük ve küçük tansiyon değerleri, bir odanın sıcaklığı ölçüldüğünde, ölçülen bu değişkenler belli bir aralıkta sonsuz sayıda değerler alabilecekleri için sürekli rassal değişkenlerdir.

S

Binom dağılımının özellikleri nelerdir?

Binom dağılımının özellikleri özetlenecek olursa;

a) Denemeler, daima aynı koşullarda tekrarlanmalıdır.

b) Yapılacak her denemenin sonunda, var olan karşılıklı ayrık iki sonuçtan yalnızca biri ortaya çıkmalıdır. Bu sonuçlardan biri ilgilenilen sonuç, diğeri ise bunun tümleyeni olan ilgilenilmeyen sonuçtur.

c) Rassal değişken, sabit sayıda denemedeki ilgilenilen durumun sayısını belirtir.

d) Tek bir denemede ilgilenilen sonucun gerçekleşme olasılığı, tüm denemelerde aynı kalmalıdır.

e) Denemeler birbirinden bağımsız yapılmalıdır.

S

olasılık değerlerinin temel özellikleri nelerdir?

Olasılık dağılımlarının iki temel özelliği bulunur. Bunlar:

  1. Belli bir sonucun olasılığı 0 ile 1 kapalı aralığında değerler alır.
  2. Tüm karşılıklı ayrık olayların olasılıkları toplamı 1’e eşittir.
S

Sürekli olasılık dağılımları nedir? açıklayınız.

Sürekli olasılık dağılımları, bir nesnenin uzunluğu, ağırlığı, sıcaklığı gibi aldığı değerleri genellikle bir ölçüm sonucunda alan sürekli rassal değişkenlere ilişkin dağılımlardır. Tanımı gereğince, sürekli rassal değişkenler için deneme sonuçları bir değer aralığı üzerindeki noktalarla belirtilir ve değişkenin aldığı sayısal değerler, olasılık dağılımları yardımıyla uygun noktalarla ilişkilendirilir. Sürekli rassal değişkenler, bir aralık üzerinde bulunan sonsuz sayıda noktayla ilişkilendirilebilir. Bu nedenle, sürekli rassal değişkenin olası her değeri için olasılık hesaplanması söz konusu değildir. Yapılabilecek şey, belli bir aralık için olasılığın hesaplanmasıdır. Bu nedenle, sürekli bir olasılık dağılımı için belli bir değer aralığında ortaya çıkan gözlem sonuçlarının oranı belirlenmeye çalışılır.

S

Normal dağılımın aritmetik ortalaması ve standart sapması kaçtır?

Aritmetik ortalaması 0 ve standart sapması 1 olan normal dağılıma standart normal dağılım adı verilir.