GÜÇ ELEKTRONİĞİ VE MOTOR SÜRÜCÜLERİNE GİRİŞ
1960 sonrası motorlarda nasıl gelişmeler olmuştur?
1960 sonrası motorların hız kontrolunda büyük gelişmelere gebe olmuştur. Öncelikle yarı iletken SCR tristörlerin icadıyla birlikte sadece DC makinaların değil aynı zamanda AC makinaların da yarı iletken güç anahtarları yardımıyla hız kontrolu mümkün hale gelmiştir.
Elektrik enerjisi nasıl kontrol edilmektedir?
Güç elektroniği, elektrik enerjisinin elektronik yöntemlerle kontrolünden doğmuştur. 1960 öncesi vakum tüpleriylek kontrol edilen büyük güçler, bu yıllardan sonra yarı iletken güç elektroniği elemanları ile gerçekleştirilmeye başlamıştır. Bu elemanlara sırasıyla; güç diyotları, güç transistörleri, tristörler gibi isimler verilmiştir. Normal elektronik devreler küçük güçleri, yani küçük akım ve gerilimleri kontrol ederler. Güç elektroniği elemanları ise büyük akım ve gerilimleri kontrol etmek durumundadırlar.
Diyot'un özellikleri nelerdir?
N tipi ; negatif yüklü veya P tipi ; pozitif yüklü olabilirler. Zener diyodu ; Farkı, p-n ekleminin zener yıkılmasına veya bozulmasına imkan verecek şekilde çok dar tutulmuş olmasıdır. Gerilim referansı veya gerilim regülatörü olarak kullanılırlar.
Tristör nedir, özellikleri nelerdir?
Kapı akımı uygulanmadığı durum için tristör, iki yönde de iletime izin vermeyen üç tane seri bağlı diyot gibidir. Ters yönde kutuplanma durumunda diyotla aynı davranışı sergiler. İleri yönde kutuplamada yani anot pozitif iken, merkezdeki kontrol jonksiyonunun delinme gerilimi aşılmadıkça sadece kaçak akım akar. Delinme gerilimleri iki yön için de aynıdır. Ters kutuplama durumunda katod P-N jonksiyonu 10Volt ta delindiğinden tüm gerilim anottaki P-N jonksiyonunda görülür.
Bir tristörü iletime geçirmek için ne gerekir?
Bir tristörü iletime geçirmek için kapı akımının çok hızlı yükselme zamanına sahip olması gerekir. Bu; anot akımının kilitleme seviyesine ulaşabileceği uzunlukta hızlı yükselme zamanına sahip darbe üretebilen tetikleme devreleriyle elde edilir. Darbe kullanılmasının nedeni kapıda daha az güç harcanmasına ve tetiklenme anının daha iyi belirlenmesine imkan vermesindendir. Tetikleme devresi art arda darbeler üretebilmelidir. Bazı uygulamalarda katodları farklı potansiyele sahip iki tristör aynı anda tetiklenmelidir. Bu durumda devre iki veya daha çok izole çıkışı olan trafo içermelidir. Ters yönde darbe uygulamasından kaçınılmalıdır, yoksa daha çok güç harcanır. Ayrıca tristör ters kutupluyken kapı akımı uygulanırsa bu kaçak akımı artırır.
Bu devre pratikte kullanılabilir midir? Sebepleri nelerdir?
Yukarıdaki devrede yük gerilimi kontrol edilmektedir. Ig ≅ Vbesleme/ R kapı akımının değeri R’ye bağlı olduğundan tetikleme açısıα∝ her periyot değişebilir, tristörün sıcaklığına ve diğer değişimlere bağlı olarak. Ayrıca tam sıfır ve tam 900 ’de tetikleme yapılamaz. Dolayısıyla bu devre pratikte kullanılmaz
Triyak'ın özellikleri nelerdir?
Triyak beş katmanlı, her iki yönde de P-N-P-N yoluna sahip ve dolayısıyla iki yönde de iletebilen elemandır. Triyak pozitif ya da negatif kapı akımıyla iletime geçebilir. T2 pozitifken pozitif, T1 pozitifken negatif uygulamak daha iyidir, ancak pratikte her ikisi için de negatif darbe uygulanır.
GTO nedir özellikleri nelerdir?
Tristörün bulunmasından sonra iki yeni ürün daha geliştirilmiştir. Bunlardan birisi ters yönde daima iletimde olan ancak daha ince silikon kullanılmasıyla daha kısa sürede tıkamaya geçebilen asimetrik tristördür. Bu tristör inverter devrelerde kullanılır. Birkaç μs içinde devreye alınıp çıkarılabilir. Diğer bir eleman kapı akımını uygulayıp kesmekle iletime sokup çıkarılabilen GTO tristörlerdir.
Görsele göre GTO ve Tristör'ü karşılaştırınız.
Şekilde görüldüğü gibi GTO, klasik tristöre göre daha karmaşık bir yapıya sahiptir. Yüksek oranda katkı içeren “+” işaretli katmanlar vardır. Kapı ve katod birbirine yakın ve dar kanallardan oluşmaktadır. İleri kutuplamada merkezi N-P jonksiyonu gerilimi tutar ancak ters kutuplamada bloke yapılamaz. Ama ters bloke yapabilen GTO’lar da yapılmıştır. GTO’lar karmaşık yapıları sebebiyle daha yüksek kilitleme akımına sahiptir.
Güç transistörü'nün özellikleri nelerdir?
Bipolar transistör 3 katmanlı NPN veya PNP yapıda güç transistörüdür. Çalışma aralığında IC akımı IB’nin fonksiyonudur. Belirli bir VCE için baz akımındaki değişme kollektör akımında katlanmış olarak görülür. Bu oran 15 – 100 kat arasındadır. Ters gerilim uygulanan bir transistörün baz – emiter jonksiyonu 10V civarında delinir. Bu modda çalışılacaksa transistöre seri diyot bağlanmalıdır. Transistörde kayıplar VCE ile IC’nin çarpımının bir fonksiyonudur. Yandaki şekilde baz akımı IC akımının 10A eçmesini sağlıyorsa, kayıp güç 1kW, gerilim düşümü 100V ve verim %50 olacaktır. Bu kabul edilemez bir kayıptır. Bu nedenle güç uygulamalarında transistör anahtar gibi kullanılır. IB= 0 iken transistör kesimdedir. İletim için transistör karakteristiğinin doyma bölgesi kullanılır. Doyma gerilimi 1,1V civarındadır. Kayıplar sadece anahtarlama sırasında gerçekleşir.
Tristör ile güç transistörünü karşılaştırınız.
30A tristör 0,1A kapı akımı, 30A transistör 2A baz akımı gerektirir. Güç transistörünün aşırı yük kapasitesi tristörden düşüktür. Transistörün anahtarlama hızı çok yüksek (1μs) tir. Transistörle yük akımı kontrol edilebilirken, tristörde iletimden sonra kontrol yoktur. Transistörlerin akım kazancını artırmak için yandaki şekilde görüldüğü gibi Darlington bağlantısı kullanılır. Bu şekilde akım kazancı 250’ye çıkarılabilir.
Güç mosfeti nedir ve özellikleri nelerdir?
Güç MOSFETi (metal oksit yarı iletken alan etkili transistör) bipolar transistörden farklı olarak gerilimle kontrol edilir. VGS sıfır iken MOSFET kesimdedir. Yaklaşık 3V uygulanınca iletime geçer. Düşük VDS değerleri için MOSFET sabit direnç özelliği gösterir. Güç kayıplarının az olması için güç MOSFETi bu bölgede çalıştırılır. Kapı gerilimi Drain akım sınırının yük akımından daha büyük olmasını sağlayacak büyüklükte tutulmalı fakat 20V’u geçmemelidir. MOSFET’in açma kapama zamanı 1μs’nin altındadır. İletim esnasındaki direnci 100V’luk MOSFET için 0,1Ω ; 500V’luk MOSFET için 0,5Ω’dur. Güç MOSFET’leri doğrudan mikro elektronik devrelerce kontrol edilebilir. Tristörden daha az gerilim seviyelerine sahip olmasına rağmen daha hızlıdır. 100V’daki iletim kayıpları tristör ve transistörden daha fazladır, ancak anahtarlama kayıpları çok daha azdı.
IGBT nedir ve özellikleri nelerdir?
IGBTler, MOSFET ile bipolar transistörün özelliklerinden yararlanarak yapılmıştır. Güç transistöründe daha çok N – P – N kullanılırken IGBT’de P – N – P yapısı kullanılır. Kollektör – Emiter karakteristiği bipolar transistöre benzerken kontrol özellikleri MOSFET gibidir. Tipik iletime geçme zamanı bipolar transistörden daha azdır ( 0,15μs ) ve MOSFET’e benzerlik gösterir.
MCt nedir?
Tristörün yük karakteristiği ile MOSFET’in kontrol karakteristiği birleştirilmiştir. MCT , GTO’da olduğu gibi ters kutuplanmada tıkama yapamaz.
SIT nedir?
Normalde iletimde olan bu eleman, (baz sinyali yokken iletimde) ters kutuplandığı zaman kesime gider. Çok hızlı anahtarlama yapabildiğinden mikrodalga frekansları seviyesinde kullanılır.
SITH nedir?
GTO’ya benzer, ancak normalde iletimdedir. Katod – kapı’ya ters gerilim uygulanırsa kesime gider. Diğer tristörlere göre daha az kayıpları vardır ve daha hızlı çalışırlar.
Doğrultucu devreleri kaç grupta incelenir bunların özellikleri nelerdir?
Doğrultucu devreleri yarım dalga ve tam dalga bağlantıları olmak üzere iki grupta tanımlanabilir.
Yarım Dalga Devreleri : Bu devrelerde AC beslemenin her hattına bir doğrultucu eleman bağlanır; elemanların katodları DC yüke ve yükün diğer ucu da AC beslemenin nötr ucuna bağlanır. Akım akışı her hatta “tek yönlü”’dür. “Tek yollu” devre de denilir.
Tam Dalga Devreleri : Biri yükü besleyen, diğeri de yük akımını AC hatta döndüren iki adet yarım dalga devresinin seri bağlanmasından oluştuğundan, nötr hattına gerek yoktur. “Köprü devreleri” ya da “çift yollu devreler” olarak da adlandırılır.
Devrelere ait kontrol karakteristikleri kaç kategoride toplanabilir?
Devrelere ait kontrol karakteristikleri üç kategoride toplanabilir.
Kontrolsüz Doğrultucu Devreleri: Sadece diyot içerirler, AC besleme gerilimiyle orantılı sabit DC gerilim sağlarlar.
Tam Kontrollü Doğrultucu Devreleri: Tristör (ya da güç transistörü) kullanılır. Tristörlerin iletime geçtiği faz açısının kontrolüyle DC yük geriliminin ortalama değeri ayarlanabilir, yönü değiştirilebilir. Tam kontrollü devreler yük ve besleme arasında iki yönde de güç transferine imkan tanıdığından “çift yönlü konverter” olarak da adlandırılırlar.
Yarım Kontrollü Devreler: Tristör ve diyot karışımı içerirler. Gerilimin yönü değiştirilemez ancak ortalama değeri ayarlanabilir. Bu sebeple yarı kontorllü ve kontrolsüz devreler “tek yönlü konverter” olarak adlandırılırlar.
Komütasyon diyodu nedir fonksiyonları nelerdir?
Çoğu devreler (özellikle kontrolsüz ya da yarı kontrollü) yandaki şekilde olduğu gibi komütasyon diyodu içerirler. By-Pass diyodu da denilir. İki fonksiyonu vardır : 1-Yük geriliminin yönünün değişmesini önlemek 2-Yük akımının ana doğrultucudan akışını önleyerek doğrultucunun bloke durumuna geçmesini sağlamak.
AC-DC dönüştürücüler ve özellikleri nelerdir?
bir tek fazlı yarım-dalga kontrollu bir doğrultucu görülmektedir. T1 tristörü α açısında tetiklendiğinde, besleme gerilimi yüke uygulanır. Sadece omik yüklü durumda, besleme geriliminin pozitif kısımında, çıkış gerilimi giriş gerilimini takip eder. Besleme negatife döndüğünde ise T1 tristörü tıkanır ve akım kesilir. Yükün, aşağıdaki şekilde olduğu gibi, endüktif olma durumunda ise, besleme gerilimi negatife dönmesine ragmen, endüktansta biriken enerjiden ötürü akım yüke doğru akmaya devam eder. Şayet serbest döngü diyotu DF olmasaydı, yük akımı döngüsünü tamamlayamayacak ve akım kesilecekti. DF diyotu giriş güç faktörünü yükseltir, yani iyileştirir.